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Abstract
The behavior of microbes can be described via the framework of non-equilibrium statistical mechanics as the discontinuous 
activity is dependent upon on surrounding dynamics, which are in turn a function of interactions with the environment. Mi-
crobial motion is normally understood to be Brownian, but to consider how perturbations in the surroundings may affect the 
variations in the randomness of motion, the general case resolves to a special condition of Multi-Fractal Brownian motion. 
Application of Fokker-Planck and Lotka- Volterra expressions results in a qualitative and quantitative understanding. In this 
study we have included the most effective possible mechanisms which can define a complex biological system through phys-
ics based approach.

Introduction

 An essential characteristic of living organisms is the 
ability to sense signals in the environment and adapt their move-
ment accordingly[1].” Microbes are defined as microscopic organ-
isms, such as bacteria, viruses, protozoa and etc. For practicality 
focus is limited to bacteria. These single-celled microscopic or-
ganisms are capable of reproduction and motility, and they con-
trol their pathogenicity in accordance to their local population 
density by movement and by regulation of cellular reproduction. 
Bacterial populations perform some genetic functionalities that 
one bacterial cell may not be able to accomplish alone, such as 
bio-luminescence, attacking a host, or assimilating into specific 
patterns to create structures, bio-films and etc. According to Pur-
cell[2] bacterial cells live in an environment at a low Reynolds 
number which renders their inertia as an irrelevant factor in their 
motion. This results in simplifying the analysis to the individual 
cell motion, and this motion is limited by the ability of the fla-
gella to propel them symmetrically, imparting Brownian motion. 
Escherichia Coli (E.Coli) bacteria have flagella that rotate by a 
biochemically powered motor located close to the body. Because 
of the chirality of these flagella, their clockwise and anti-clock-
wise rotations are nonequivalent. One rotation direction results 
in the flagella propelling the cell by creating a smooth swim-
ming motion in one direction and the opposite rotation causes 
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the flagella to separate, resulting in randomized cell motion as a 
binary response. We study such systems through a physics based 
approach and put forward the concepts and ideas which may be 
able to give us a much better understanding of such complex 
biological system.

Quorum Sensing and Chemotaxis
According to Bonnie Bassler[3], Bacteria accomplish coordina-
tion of motion to perform multicellular functions via Quorum 
Sensing , a systematic production and reception of auto-inducers, 
or Quorum Sensing Molecules (QSM’s), to limit cell reproduc-
tion and therefore local population density. Certain physiologi-
cal functions of bacteria can only be accomplished by many cells 
cooperating at once, and Quorum Sensing is how they detect and 
regulate their population. If each bacterial cell is in possession 
of 2 specific proteins on its surface, one producing QSM’s and 
another receiving the QSMs providing then the cell has access to 
information about the local QSM density, (see Figure 1). Once 
this local density of QSMs reaches a certain threshold, the cell 
can interpret an implicit population density threshold of other 
similar QSM producing cells signaling a stop in reproduction. 
This is a simplistic explanation of how cells of the same species 
regulate their local population densities based on a maximum 
threshold, which may rep- resent the population density required 
for some function or perhaps the maximum cell density the food 
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(energy source) provided by the environment can support in a 
specific region. 

Figure 1: QSM’s (triangles) and bacterial cells[3]

 In addition to QSMs regulating bacterial behavior, the 
other important factors including Chemosensitive movement[1], 
or response to chemicals in the environment as either Chemo- 
attractors or Chemo-repellants, Figure 2 are broadly used in the 
mathematical literature to represent motivating gradients such 
as food, predators, etc. Applying chemotactic sensitivity which 
is the extent to which a bacterial cells motion responds to the 
chemotactic gradient, and regulating this through population dy-
namics via quorum sensing the fundamentals involved in bacte- 
rial movement are understood. It is not purely Brownian motion 
as it retains global tendencies through these two concepts uni-
versal to bacteria. This Brownian motion can be expressed in 
terms of the Langevin equation from which we can calculate 
the entropy using Fokker-Planck equations. This will give us a 
better understanding of a non-equilibrium process and we can 
apply the same approach to other biological systems. 

Figure 2:  (1) Illustration of the (a) Volume filling model, and (b) Quo-
rum sensing model

Multi-Fractal Brownian Motion
Restricting focus to Escherichia Coli (E.Coli), individual mo-
tions of bacterial cells are confined to a ”binary response”, spe-
cifically that of tumbles (randomizing their direction) or smooth 
runs (see Figure 3), ”In the presence of a chemo attractant, E. coli 
bias their behavior by tumbling less frequently in an increasing 
attractant gradient, resulting in the general movement towards 
high concentrations[1].” This leads to a mathematical model by 
Kevin J. Painter and Thomas Hillen[1] as a system of partial dif-
ferential equations (see method section). Fig 3 Brownian Motion 
is described as a time evolution of a stochastic (random) process 
and is thus governed by the Fokker-Planck equation. In a gener-
al way the motion of a microbial organism is characterized but 
the motivation is to understand to what extent this can describe 
microbe movement and self-organization. Initially it was real-

ized that a system of bacterial cells must be somewhat self-sim-
ilar in their motion. This implies a degree of non-randomness. 
This realization prompted investigation into what is known as 
Fractional Brownian Motion fBm), which is used to model nu-
merous mathematical outcomes in areas such as Finance, Hy-
drology, and Telecommunications[5]. These processes are gov-
erned by the Hurst parameter. If a fractional Brownian process 
can be re-scaled to have stationary intervals, the Hurst exponent 
is regarded as a parametric constant characterizing the degree 
of self-similarity. If H = 1/2, the fBm is identical to a standard 
Brownian motion, if H > 1/2, the increments are persistent, if H < 
1/2, the increments are anti-persistent. To take this one step fur-
ther it is postulated that if a population of bacterial cells evolves 
through time in a non-linear way according to quorum sensing 
then the randomness of the individual cell motility must also 
vary. This conclusion was reached intuitively by considering 
the notion that chemo-sensitivity is a function of the population 
density of cells and by extension a function of QSM population 
dynamics. If the tumbling frequency and smooth walk duration 
are affected by chemo-sensitivity, then they are affected by pop-
ulation dynamics. Thus, the Hurst exponent characterizing the 
self-similarity of the motility processes of bacterial cells must 
vary in accordance with population growth, and in contrast to 
being a constant as in fractional Brownian motion, must in fact 
be variationally dependent on time. The final characterization 
of bacterial motion as Multi-Fractal Brownian Motion was de-
termined by this realization. This a perturbation of the theory of 
stochastic processes, involving a time-varying Hurst parameter, 
H = H(t), which depicts the long-memory of a time series[6]. Ap-
parently, a bacterial cell population moves with a varying mem-
ory of past motion. This idea is corroborated by multiple peer 
reviewed papers[5,7,8], and in fact a variation of the Fokker-Planck 
equation governing time evolutions of multi-fractal processes 
was found to have been derived in two concurring papers[5,9]. 
The gap we discovered that has not been bridged, is between 1; 
the Fokker-Planck governing multi-fractal processes in junction 
with a time-varying Hurst parameter arising in bacterial popu-
lation growth, and 2; a bacterial population dynamic governed 
by quorum sensing. We aim to use the mathematical modeling 
provided by the papers weave cited to bring quorum sensing into 
the fold of a progressive understanding of multi-fractal bacterial 
motility and swimming patterns generating bacterial grouping. 

Figure 4 & 5 Exact sample paths of multi-fractal Brownian Mo-
tion with a various Hurst parameter functions H(t)[5]
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Figure 4: H(t) = .51 + (t.5)2 for t < .5 and H(t) = .51fort.5. The Hurst 
parameter approaches .51 as t1/2

Figure 5: H(t) = 23 + sin(t)12. The Hurst parameter oscillates between 
7/12 and 9/12

Note there is a striking resemblance between this sinusoidal 
Hurst parameter (Figure 4 5) and the graph describing tumbling 
frequency in a bacterial population (Figure 6). This suggests 
a direction for describing a time varying Hurst parameter as a 
function of population density. 

Figure 6: Measurement of average tumbling frequency of stimulated 
and unstimulated cells. Average tumbling frequency of a cell population 
during a 10-s video segment was measured at 1-min intervals for 20 
min after sample preparation[8]. Cells at a given stage of growth were 
unstimulated (+) or stimulated with 1 mM L-aspartate (◦). The vertical 
dotted line corresponds to the time for 50% adaptation to a saturating 
stimulus of L-aspartate, τ1/2. Other parameters described in the text are 
shown (T Fst,0, T Fi, and T Fst,1).

Contributions of Thermodynamics
The fundamental assumption of statistical mechanics, as stated 
by Schroeder[10], is that in an isolated system in thermal equilib-
rium all accessible microstates are equally probable. This leads 
him to assume that systems transitions between the available 
microstates are random and constitute no quantifiable pattern. 
It is here postulated that bacterial systems do generate observ-
able patterns thus in a state of non-thermal equilibrium. Another 

principle detailed by Schroeder[10] is that of ”Detailed Balance” 
which assumes that interactions between constituents of a sys-
tem are strong enough for the exchange of energy, but too weak 
to have much effect on the energy levels themselves. According 
to M.E. Cates this principle of detailed balance is mesoscopical-
ly absent in motile bacteria[4]. This implies that the interactions 
between bacterial cells must have a significant effect on the en-
ergy level of the system. Historically, modeling of the growth 
of microbes has relied on only empirical data, which limits 
understand- ing and predictive capacity in many environmen-
tal systems. Theoretically, a population of N bacterial cells are 
consuming food, transducing energy and reproducing. For each 
cell, it is proposed[11] that consuming a threshold level of energy 
from the environment spontaneously triggers the transduction 
of the consumed energy in the division process increasing en-
tropy and is thus an irreversible process (see Figure 7). During 
the harvesting process, each cell has access to a volume, Vharv , 
within which it can consume the chemical energy. The amount 
of energy available in Vharv for the cell to consume is dependent 
on the thermodynamic state of the environment, and is denoted 
as the ”catabolic energy”, representing the maximum amount of 
work available from the consumable molecules. 

Figure 7: As shown in[11]; (a) Graphical representation of microbial en-
ergy levels along division coordinates. Microbial energy (EM ) is aug-
mented by the catabolic energy within the harvesting volume (Ecat[S]
Vharv , symbolized as dots in a circle surrounding the microbe). Reach-
ing the threshold catabolic energy (EM + E ), the microbe is activated (a 
state denoted X ), and an irreversible division process is triggered, asso-
ciated with energy dissipation (Edis = E EM ), resulting in two microbes. 
(b) Growth rate of E. coli as a function of glucose concentrations under 
aerobic conditions. The plain curve shows the fit of the data. The dashed 
curve shows the fit of a Monod equation. A detail of the growth rate/
concentration dependency at low substrate concentration is shown, il-
lustrating that the mathematical expression naturally accounts for the 
existence of an apparent substrate threshold concentration for growth.

 A non-equilibrium thermodynamic state exists and the 
catabolic energy for each cell varies with time along with its 
chemotactic gradient. Energy levels can be attributed to each 
elementary volume V Vharv and thus to each cell. The existing 
kinetic theories describing microbial growth are all phenome-
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nological in nature, and don’t treat the underlying metabolism. 
It would be impractical to write down all the kinetic theories 
specific to each enzyme reaction and integrate them individually. 
 An alternative approach is the consideration of these 
non-equilibrium processes through non-equilibrium thermody-
namics, a case where more general expressions can be used to 
describe the heat evolution associated with microbial growth 
(Edis in Figure 7), and in aerobic processes heat production is 
closely related to the rate of consumption of chemo-attractant 
(food) molecules[9]. For more detailed chemistry information 
and the rigorous development of the “mosaic” approach see ref-
erences[9,11].

Mathematical Modeling
The first model of bacterial motion is one describing the popu-
lation dynamics of all present factors that affect the tendencies 
in local individual cell movements. It is postulated that these 
population densities completely govern the statistics of how the 
bacterial cells will move. An initial Lotka-Volterra-type varying 
population differential equation is formulated. Response to the 
chemoattractant is regulated by the QSM density, providing a 
mechanism by which cells can pack at a lower density than the 
physical maximum to fill the local volume. The n’th cell’s tran-
sitional probability is of the general form, tnτ

± (v, w) , where ”v” 
is the local chemoattractant density and ”w” is the local quo-
rum-sensing molecule density. Different models are possible, 
depending on exactly how the quorum sensing modulates the 
signaling pathway, but assuming the case in which ”w” inter-
feres with the gradient sensing the chemotactic sensitivity is 

tnτ
±  = α + β(t (vi±1, wi±1) − t (vi, wi))         (1)

where α and β are constant parameters. 
Assuming tnτ

±  ≥ 0 , where ui(t) is the probability of a cell at idZ 
at time t, conditioned on beginning at i = 0 at t = 0. This evolu-
tion is placed into the continuous-time discrete-space equation[1].

1 1 1 1 ( )i
i i i i i

u u u u
t

τ τ τ τ+ − + −
− − + +

∂
= + − −

∂  Eq 2

to achieve a system of coupled partial differential equations de-
scribing the population dynamics of bacteria, chemoattractant 
molecules, and QSM’s[1].

2

2 [ ( , ) ] [ ( , ) ] ( , , )u v w
u u w wD u v w u v w f u v w
t x x x x x

χ χ∂ ∂ ∂ ∂ ∂ ∂
= − − +

∂ ∂ ∂ ∂ ∂ ∂  Eq (3),

2

12 ( , , )v vDv g u v w
t x
∂ ∂

= +
∂ ∂

 (4), 

2

22 ( , , )w wDw g u v w
t x

∂ ∂
= +

∂ ∂ (5)

where 
u(x, t) is the bacterial cell population density, 
v(x, t) is the chemoattractant concentration, 
w(x, t) is the QSM population density,
Du,v,w are the diffusion coefficient related to the respective trans-
lational probabilities,
χ(v, w) = χ0(1 − u) is commonly referred to as the chemotac-
tic sensitivity function (as seen above, this is regulated both by 
QSM and Chemotaxis concentrations),

 f, g1, g2 are additional chemical kinetics which account 
for the stochastic kinetics (random processes due to the low 
Reynolds-number environment).
 Bacteria have been considered to be subject to Brown-
ian motion as a consequence of the random kinetic processes im-
parted on them by their environment because of its high viscos-
ity relative to their cell mass. As described here, these stochastic 
processes are not the only source of motion for bacteria. In the 
case of E. Coli cell motility is also self propagated via flagel-
la in statistical accordance to genetic cooperation governed by 
perceived local population densities of QSM’s emitted by other 
cells and chemotactic gradients provided by the environment.
This implies fractional Brownian motion, a Gaussian centered 
process [Bt

H , t ≥ 0] with the covariance function 0 ≤ s, 0 ≤ t ,

E[Bt
H Bs

H ] = 1/2 (t2H + s2H − |t − s|2H )  (6)

where H d [0, 1], with a “Hurst parameter” H. If H = ½ we 
get E[Bt

½ Bs
½ ] = t or s, and thus a completely unbiased ran-

dom walk. Clearly, H m1/2, gives rise to the name “fractional” 
Brownian motion. This does not account for all of the tendencies 
implied by eqns (3), (4), (5). The bacterial cells move more(or 
less) randomly depending on where they are and how their en-
vironment has changed with time. As the cell population grows 
and moves, it affects its own chemotactic gradient and it also 
affects the statistical motility of its constituent cells via quorum 
sensing which governs local population densities. So, a given 
bacterial cell under such circumstances would clearly move 
more randomly in a time interval’s’ than in another time interval 
’t’. IT is concluded that not only is the Hurst parameter H not 
constant and 1, it varies as a function of the QSM, bacterial, and 
chemotactic molecules population density, and thus is a function 
of time H = H(t). If H(t) is differentiable, then according to[12], 
var[Bt

H ] = t2Ht is differentiable and it is Laplace transformable. 
This satisfies the conditions for the derivation of a Fokker-Plank 
equation[5]. Let BH be a multifractional Brownian motion with H 
differentiable on (0, ∞), Eα be the inverse of a stable subordina-
tor W with α d (0, 1), independent of BH. Then, the transition 
probabilities q(x, t) of the time-changed process (BEt

αH )t ≥0 sat-
isfy the Fokker-Plank partial differential equation[5].

2( , ) ( , )H
t

t xB
q x t q x tα∂ = Λ ∂  Eq (7) 

where t > 0, x d R and ΛαBtH denoting the operator given by: 

1 1( ) ( ) ( ) ( )
2 2H

t
s t HB c

g t L s z R s z g z dz
i

α α α α αα
π

−
→
 Λ = − −  ∫ 

 Eq (8) 

with the initial condition q(x, 0) = δ(x) , where g˜(z) is the s → t 
Laplace transform of some function g(t) and L−1

s → t is the inverse 
Laplace transform[5,12].

Discussion & Conclusion

Throughout this paper the non-equilibrium statistical physics 
of microorganisms and its constituent mechanisms have been 
studied. It is possible for a general theory to exist, but it must 
be obtained by integrating multiple separate approaches to the 
subject; one of the goals of this effort. By inspecting the nature 
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of quorum sensing and chemotactic behavior, it is concluded that 
bacterial motion can be identified as a multi-fractal Brownian 
process with a time-varying Hurst parameter, specific to any giv-
en species or collection of species. This classification prompted 
the investigation of a mathematical theory for the probability 
densities for various observables according to this particular 
time-varying behavior, and it was discovered that they can be 
generally considered as a class of functions satisfying the Fok-
ker-Planck equations perturbation provided (eq. 5), which was 
derived and agreed upon by multiple sources[5,9]. 
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